Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.053
Filtrar
1.
Insect Biochem Mol Biol ; 168: 104110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522557

RESUMO

The black soldier fly (BSF), Hermetia illucens, has gained traction recently as a means to achieve closed-loop production cycles. BSF can subsist off mammalian waste products and their consumption of such waste in turn generates compost that can be used in agricultural operations. Their environmental impact is minimal and BSF larvae are edible, with a nutritional profile high in protein and other essential vitamins. Therefore, it is conceivable to use BSF as a mechanism for both reducing organic waste and maintaining a low-impact food source for animal livestock or humans. The main drawback to BSF as a potential human food source is they are deficient in fat-soluble vitamins such as Vitamins A, D, and E. While loading BSF with essential vitamins may be achieved via diet-based interventions, this undercuts the goal of a closed-loop as specialized diets would require additional supply chains. An alternative is to genetically engineer BSF that can synthesize these essential vitamins. Here we describe a BSF line that has been engineered with the two main carotenoid biosynthetic genes, CarRA and CarB for production of provitamin carotenoids within the Vitamin A family. Our data describe the manipulation of the BSF genome to insert transgenes for expression of functional protein products.


Assuntos
Dípteros , Humanos , Animais , Dípteros/genética , Larva/genética , Animais Geneticamente Modificados , Vitaminas , Mamíferos
2.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488057

RESUMO

Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.


Assuntos
Borboletas , Dípteros , Masculino , Feminino , Animais , Borboletas/genética , Cromossomos/genética , Genoma , Larva/genética , Transcriptoma , Dípteros/genética
3.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474171

RESUMO

Chloropidae, commonly known as grass flies, represent the most taxonomically diverse family of Diptera Carnoidea, comprising over 3000 described species worldwide. Previous phylogenetic studies of this family have predominantly relied on morphological characters, with mitochondrial genomes being reported in a few species. This study presents 11 newly sequenced mitochondrial genomes (10 Chloropidae and 1 Milichiidae) and provides the first comprehensive comparative analysis of mitochondrial genomes for Chloropidae. Apart from 37 standard genes and the control region, three conserved intergenic sequences across Diptera Cyclorrhapha were identified in all available chloropid mitochondrial genomes. Evolutionary rates within Chloropidae exhibit significant variation across subfamilies, with Chloropinae displaying higher rates than the other three subfamilies. Phylogenetic relationships based on mitochondrial genomes were inferred using maximum likelihood and Bayesian methods. The monophyly of Chloropidae and all four subfamilies is consistently strongly supported, while subfamily relationships within Chloropidae remain poorly resolved, possibly due to rapid evolution.


Assuntos
Dípteros , Genoma Mitocondrial , Animais , Filogenia , Teorema de Bayes , Dípteros/genética , Sequência de Bases
4.
Vet Med Sci ; 10(3): e1417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516829

RESUMO

BACKGROUND: Hippoboscid flies are bloodsucking arthropods that can transmit pathogenic microorganisms and are therefore potential vectors for pathogens such as Bartonella spp. These Gram-negative bacteria can cause mild-to-severe clinical signs in humans and animals; therefore, monitoring Bartonella spp. prevalence in louse fly populations appears to be a useful prerequisite for zoonotic risk assessment. METHODS: Using convenience sampling, we collected 103 adult louse flies from four ked species (Lipoptena cervi, n = 22; Lipoptena fortisetosa, n = 61; Melophagus ovinus, n = 12; Hippobosca equina, n = 8) and the pupae of M. ovinus (n = 10) in the federal state of Saxony, Germany. All the samples were screened by polymerase chain reaction (PCR) for Bartonella spp. DNA, targeting the citrate synthase gene (gltA). Subsequently, PCRs targeting five more genes (16S, ftsZ, nuoG, ribC and rpoB) were performed for representatives of revealed gltA genotypes, and all the PCR products were sequenced to identify the Bartonella (sub)species accurately. RESULTS AND CONCLUSIONS: The overall detection rates for Bartonella spp. were 100.0%, 59.1%, 24.6% and 75.0% in M. ovinus, L. cervi, L. fortisetosa and H. equina, respectively. All the identified bartonellae belong to the Bartonella schoenbuchensis complex. Our data support the proposed reclassification of the (sub)species status of this group, and thus we conclude that several genotypes of B. schoenbuchensis were detected, including Bartonella schoenbuchensis subsp. melophagi and Bartonella schoenbuchensis subsp. schoenbuchensis, both of which have previously validated zoonotic potential. The extensive PCR analysis revealed the necessity of multiple PCR approach for proper identification of the ruminant-associated bartonellae.


Assuntos
Bartonella , Dípteros , Ftirápteros , Humanos , Animais , Dípteros/genética , Dípteros/microbiologia , Ftirápteros/genética , DNA Bacteriano/genética , Bartonella/genética , Ruminantes/genética , DNA , Alemanha/epidemiologia , Reação em Cadeia da Polimerase/veterinária
5.
Vet Parasitol Reg Stud Reports ; 49: 100999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462303

RESUMO

This study aims to study the morphological and molecular characterization of (Pseudolynchia canariensis; Macquart, 1839)in the Al-Baha region of Saudi Arabia. Ninety-four pigeons were obtained from traditional pigeon breeding farms of the Al-Baha region, and fly samples were collected. Taxonomic keys were used to define the morphology of flies, whereas molecular characteristics were identified based on cytochrome c oxidase subunit 1. The rate of Pseudolynchia canariensis infestation in the examined pigeons was 44.5%. The genetic sequences of the fly samples were deposited in GenBank (accession number OQ073507). The match rate between the fly samples from the present study and those previously recorded in GenBank (accession numbers: EF531220, OM073981, and MW853922) displayed 99.66%. This study demonstrates that Pseudolynchia canariensis is common in the Al-Baha region; thus, further studies are required to detect other species from the same genus and their geographical distribution.


Assuntos
Dípteros , Animais , Dípteros/genética , Arábia Saudita/epidemiologia , Columbidae
6.
PLoS One ; 19(3): e0298338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451906

RESUMO

The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22-72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.


Assuntos
Dípteros , Escherichia coli , Animais , Escherichia coli/genética , Catepsina L/genética , Catepsina L/metabolismo , Dípteros/genética , Larva/fisiologia , RNA Mensageiro/metabolismo
7.
Gene ; 913: 148356, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38462022

RESUMO

Horseflies from the Tabanidae family play a significant role in traditional Chinese medicine to treat various health conditions, including coronary heart disease, stroke, headaches, liver cirrhosis, psoriasis, and hepatic carcinoma. There are 27 species of Tabaninae (Tabanidae) used as medicine, and they showed high morphological similarities with those for which medicinal properties have not been reported. Nonetheless, there have been reports suggesting that medicinal crude drugs sometimes contain irrelevant or false species, impacting the drug's efficacy. In this current study, we collected 14 batches, totaling 13,528 individuals, from various provinces in China. Instead of "classic" DNA barcoding strategy, we employed a high-throughput metabarcoding approach to assess the biological composition of crude drug mixtures derived from horseflies. Our analysis identified 40 Amplicon Sequence Variants (ASVs) with similarity percentages ranging from 92% to 100% with 12 previously reported species. Species delimitation methods revealed the presence of 11 Molecular Operational Taxonomic Units (MOTUs), with ten belonging to the Tabanus genus and one to Hybomitra. Tabanus sp6 displayed the highest relative abundance, and its ASVs showed close resemblance to Tabanus pleski. Our investigations revealed that the medicinal batches were biologically composed of 6 to 12 species. Some batches contained ASVs that closely resembled species previously associated with false Tabanus species. In conclusion, our findings offer valuable insights into the biological composition of crude drugs derived from horseflies and have the potential to enhance the quality of these traditional medicines.


Assuntos
Dípteros , Humanos , Animais , Dípteros/genética , Biodiversidade , China , Código de Barras de DNA Taxonômico
8.
Naturwissenschaften ; 111(2): 15, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478046

RESUMO

In Earth's history warm and cold periods have alternated. Especially, during the Pleistocene, the alternation between these different climatic conditions has led to frequent range expansions and retractions of many species: while thermophilic species dispersed during warm periods, cold adapted species retracted to cold refugia and vice versa. After the last Pleistocene cycle many cold adapted taxa found refuges in relict habitats in mountain ranges. One example for such a cold adapted relict is the flightless snow fly Chionea araneoides (Dalman, 1816). It can be found in lower mountain ranges of Central Europe exclusively in stone runs and stony accumulations which provide cold microclimates. Imagines develop only in winter. They have strongly restricted ranges and hence experienced strong isolation predicting that local populations may show local adaptation and hence also genetic differentiation. We investigated this for several middle mountain ranges of Germany using the COI barcoding gene. Our analyses revealed two distinct lineages, one in the Bavarian Forest and a second one in all other more northern locations up to Scandinavia. These lineages likely go back to post-Pleistocene isolation and should be studied in more detail in the future, also to confirm the taxonomic status of both lineages. Further, we confirmed former records of the species for Germany and report new records for the federal states of Saxony, Lower Saxony, Saxony-Anhalt and Thuringia. Finally, we provide the first evidence of two types of males for the species, a small and a larger male type.


Assuntos
Dípteros , Masculino , Animais , Filogenia , Dípteros/genética , Gelo , Variação Genética , Neve
9.
PLoS One ; 19(2): e0298367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358970

RESUMO

Diamesa species (Diptera, Chironomidae) are widely distributed in freshwater ecosystems, and their life cycles are closely linked to environmental variables such as temperature, water quality, and sediment composition. Their sensitivity to environmental changes, particularly in response to pollution and habitat alterations, makes them valuable indicators of ecosystem health. The challenges associated with the morphological identification of larvae invoke the use of DNA barcoding for species determination. The mitochondrial cytochrome oxidase subunit I (COI) gene is regularly used for species identification but faces limitations, such as similar sequences in closely related species. To overcome this, we explored the use of the internal transcribed spacers (ITS) region in addition to COI for Diamesa larvae identification. Therefore, this study employs a combination of molecular markers alongside traditional morphological identification to enhance species discrimination. In total, 129 specimens were analysed, of which 101 were sampled from a glacier-fed stream in Rotmoostal, and the remaining 28 from spring-fed streams in the neighbouring valleys of Königstal and Timmelstal. This study reveals the inadequacy of utilizing single COI or ITS genes for comprehensive species differentiation within the genus Diamesa. However, the combined application of COI and ITS markers significantly enhances species identification resolution, surpassing the limitations faced by traditional taxonomists. Notably, this is evident in cases involving morphologically indistinguishable species, such as Diamesa latitarsis and Diamesa modesta. It highlights the potential of employing a multi-marker approach for more accurate and reliable Diamesa species identification. This method can be a powerful tool for identifying Diamesa species, shedding light on their remarkable adaptations to extreme environments and the impacts of environmental changes on their populations.


Assuntos
Chironomidae , Dípteros , Animais , Chironomidae/genética , Dípteros/genética , Ecossistema , Larva/anatomia & histologia , Rios , Áustria , Código de Barras de DNA Taxonômico
10.
J Econ Entomol ; 117(2): 650-659, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38401129

RESUMO

Transgenic insect strains with tetracycline repressible (Tet-Off) female-lethal genes provide significant advantages over traditional sterile insect techniques for insect population control, such as reduced diet and labor costs and more efficient population suppression. Tet-Off systems are suppressed by tetracycline-class antibiotics, most commonly tetracycline (Tc) or doxycycline (Dox), allowing for equal sex ratio colonies of transgenic insects when reared with Tc or Dox and male-only generations in their absence. Dox is a more stable molecule and has increased uptake than Tc, which could be advantageous in some insect mass-rearing systems. Here, we evaluated the suitability of Dox for rearing Tet-Off female-lethal strains of Australian sheep blowfly, Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae), and New World screwworm, Cochliomyia hominivorax (Coquerel, 1858) (Diptera: Calliphoridae), and the effects of dosage on strain performance. For both species, colonies were able to be maintained with mixed-sex ratios at much lower dosages of Dox than Tc. Biological yields of C. hominivorax on either antibiotic were not significantly different. Reduction of Dox dosages in C. hominivorax diet did not affect biological performance, though rearing with 10 or 25 µg/mL was more productive than 50 µg/mL. Additionally, C. hominivorax mating performance and longevity were equal on all Dox dosages. Overall, Dox was a suitable antibiotic for mass-rearing Tet-Off female-lethal L. cuprina and C. hominivorax and was functional at much lower dosages than Tc.


Assuntos
Dípteros , Animais , Feminino , Masculino , Dípteros/genética , Calliphoridae , Doxiciclina/farmacologia , Austrália , Animais Geneticamente Modificados , Tetraciclina/farmacologia , Antibacterianos
11.
Parasit Vectors ; 17(1): 82, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389104

RESUMO

BACKGROUND: Traditional methods for detecting insect-borne bacterial pathogens are time-consuming and require specialized laboratory facilities, limiting their applicability in areas without access to such resources. Consequently, rapid and efficient detection methods for insect-borne bacterial diseases have become a pressing need in disease prevention and control. METHODS: We aligned the ribosomal 16S rRNA sequences of seven bacterial species (Staphylococcus aureus, Shigella flexneri, Aeromonas caviae, Vibrio vulnificus, Salmonella enterica, Proteus vulgaris, and Yersinia enterocolitica) by DNASTAR Lasergene software. Using DNASTAR Lasergene and Primer Premier software, we designed universal primers RLB-F and RLB-R, two species-specific probes for each pathogen, and a universal probe (catch-all). The PCR products of seven standard strains were hybridized with specific oligonucleotide probes fixed on the membrane for specific experimental procedures. To evaluate the sensitivity of PCR-RLB, genomic DNA was serially diluted from an initial copy number of 1010 to 100 copies/µl in distilled water. These dilutions were utilized as templates for the PCR-RLB sensitivity analysis. Simultaneous detection of seven fly-borne bacterial pathogens from field samples by the established PCR-RLB method was conducted on a total of 1060 houseflies, collected from various environments in Lanzhou, China. RESULTS: The established PCR-RLB assay is capable of detecting bacterial strains of about 103 copies/µl for S. aureus, 103 copies/µl for S. flexneri, 105 copies/µl for A. caviae, 105 copies/µl for V. vulnificus, 100 copies/µl for S. enterica, 105 copies/µl for P. vulgaris, and 100 copies/µl for Y. enterocolitica. The results demonstrate that the detection rate of the established PCR-RLB method is higher (approximately 100 times) compared to conventional PCR. This method was applied to assess the bacterial carrier status of flies in various environments in Lanzhou, China. Among the seven bacterial pathogens carried by flies, S. enterica (34.57%), S. flexneri (32.1%), and Y. enterocolitica (20.37%) were found to be the predominant species. CONCLUSIONS: Overall, this research shows that the rapid and efficient PCR-RLB detection technology could be a useful for surveillance and therefore effective prevention and control the spread of insect-borne diseases. Meanwhile, the experimental results indicate that urban sanitation and vector transmission sources are important influencing factors for pathogen transmission.


Assuntos
Bactérias , Dípteros , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Dípteros/genética , Hibridização de Ácido Nucleico/métodos , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Staphylococcus aureus
12.
Mol Genet Genomics ; 299(1): 5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315256

RESUMO

The CRISPR/Cas9 system is the most straightforward genome-editing technology to date, enabling genetic engineering in many insects, including the black soldier fly, Hermetia illucens. The white gene plays a significant role in the multifarious life activities of insects, especially the pigmentation of the eyes. In this study, the white gene of H. illucens (Hiwhite) was cloned, identified, and bioinformatically analysed for the first time. Using quantitative real-time polymerase chain reaction (qPCR), we found that the white gene was expressed in the whole body of the adult flies, particularly in Malpighian tubules and compound eyes. Furthermore, we utilised CRISPR/Cas9-mediated genome-editing technology to successfully generate heritable Hiwhite mutants using two single guide RNAs. During Hiwhite genome editing, we determined the timing, method, and needle-pulling parameters for embryo microinjection by observing early embryonic developmental features. We used the CasOT program to obtain highly specific guide RNAs (gRNAs) at the genome-wide level. According to the phenotypes of Hiwhite knockout strains, the pigmentation of larval stemmata, imaginal compound eyes, and ocelli differed from those of the wild type. These phenotypes were similar to those observed in other insects harbouring white gene mutations. In conclusion, our results described a detailed white genome editing process in black soldier flies, which lays a solid foundation for intensive research on the pigmentation pathway of the eyes and provides a methodological basis for further genome engineering applications in black soldier flies.


Assuntos
Dípteros , Edição de Genes , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Dípteros/genética , RNA Guia de Sistemas CRISPR-Cas , Mutação
13.
Waste Manag ; 177: 252-265, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354633

RESUMO

The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Humanos , Larva/genética , Seleção Artificial , Aminoácidos , Dípteros/genética
14.
Evolution ; 78(4): 801-802, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38224497

RESUMO

Meiotic drivers that act during spermatogenesis derive a transmission advantage by disabling sperm that do not carry the driver, often leading to substantially reduced overall sperm number and function. A new study by Bates et al. shows no sperm deficit for a driver in a stalk-eyed fly, in contrast to a related species. This observed sperm compensation is possibly due to secondary testes-expanding mutations linked to the driving genomic locus.


Assuntos
Dípteros , Cromossomo X , Animais , Masculino , Sêmen , Dípteros/genética , Razão de Masculinidade , Cromossomos Sexuais/genética , Espermatozoides
15.
BMC Genomics ; 25(1): 111, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38297211

RESUMO

BACKGROUND: Wohlfahrtia magnifica is an obligatory parasite that causes myiasis in several warm-blooded vertebrates. Adult females deposit the first-stage larvae directly onto wounds or natural body orifices (e.g., genitalia) of the host, from where they quickly colonize the host tissue and feed on it for development. The infestation of W. magnifica can lead to health issues, welfare concerns, and substantial economic losses. To date, little is known about the molecular mechanisms of the W. magnifica-causing myiasis. RESULTS: In this study, we collected parasitic-stage larvae of W. magnifica from wounds of naturally infested Bactrian camels, as well as pupae and adult flies reared in vitro from the wound-collected larvae, for investigating the gene expression profiles of the different developmental stages of W. magnifica, with a particular focus on examining gene families closely related to the parasitism of the wound-collected larvae. As key proteins related to the parasite-host interaction, 2049 excretory/secretory (ES) proteins were identified in W. magnifica through the integration of multiple bioinformatics approaches. Functional analysis indicates that these ES proteins are primarily involved in cuticle development, peptidase activity, immune response, and metabolic processes. The global investigation of gene expression at different developmental stages using pairwise comparisons and weighted correlation network analysis (WGCNA) showed that the upregulated genes during second-stage larvae were related to cuticle development, peptidase activity, and RNA transcription and translation; during third-stage larvae to peptidase inhibitor activity and nutrient reservoir activity; during pupae to cell and tissue morphogenesis and cell and tissue development; and during adult flies to signal perception, many of them involved in light perception, and adult behavior, e.g., feeding, mating, and locomotion. Specifically, the expression level analysis of the likely parasitism-related genes in parasitic wound-collected larvae revealed a significant upregulation of 88 peptidase genes (including 47 serine peptidase genes), 110 cuticle protein genes, and 21 heat shock protein (hsp) genes. Interestingly, the expression of 2 antimicrobial peptide (AMP) genes, including 1 defensin and 1 diptericin, was also upregulated in the parasitic larvae. CONCLUSIONS: We identified ES proteins in W. magnifica and investigated their functional distribution. In addition, gene expression profiles at different developmental stages of W. magnifica were examined. Specifically, we focused on gene families closely related to parasitism of wound-collected larvae. These findings shed light on the molecular mechanisms underlying the life cycle of the myiasis-causing fly, especially during the parasitic larval stages, and provide guidance for the development of control measures against W. magnifica.


Assuntos
Dípteros , Miíase , Parasitos , Sarcofagídeos , Animais , Feminino , Sarcofagídeos/genética , Parasitos/genética , Miíase/genética , Miíase/parasitologia , Dípteros/genética , Larva , Pupa , Perfilação da Expressão Gênica , Peptídeo Hidrolases
16.
J Insect Physiol ; 153: 104614, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272205

RESUMO

Parasitoids have utilized a variety of strategies to counteract host defense. They are in different taxonomic status and exhibit phenotypic and genetic diversity, and thus are thought to evolve distinct anti-defense mechanisms. In this study, we investigated the performance of two closely related parasitoids, Exorista japonica and Exorista sorbillans (Diptera: Tachinidae) that are biological control agents in agriculture and major insect pests in sericulture, on the host Bombyx mori. We show that the host is more susceptible to E. sorbillans infection while relatively resistant to E. japonica infection. Moreover, the expression levels of host antimicrobial peptides (AMPs) genes are repressed at early infection and induced at late infection of E. japonica, while AMPs are over-expressed at early infection and return to normal levels at late infection of E. sorbillans. In parallel, Toll and IMD pathway genes are generally induced at late infection of E. japonica, whereas these genes are up-regulated at early infection and down-regulated at late infection of E. sorbillans. Activating of host Toll/IMD pathways and AMPs expression by lipopolysaccharide (LPS) represses the larval growth of E. sorbillans. Conversely, inhibiting host Toll/IMD pathways by RNA interference significantly promotes E. japonica development. Therefore, the Toll/IMD pathways are required in the host for defense against infection of dipteran parasitoids. Overall, our study provides the new insight into the diversified host-parasitoid interactions, and offers a theoretical basis for further studies of the adaptive mechanism of dipteran parasitoids.


Assuntos
Dípteros , Animais , Dípteros/genética , Larva/genética
17.
J Econ Entomol ; 117(2): 660-665, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254238

RESUMO

The Hessian fly, Mayetiola destructor (Say), is one of the most important insect pest plaguing wheat (Triticum aestivum, L) producers across the United States and around the world. Genetic resistance is the stalwart for control of Hessian fly. However, new genotypes (biotypes) arise in deployment of wheat containing resistance genes, so field populations must be evaluated periodically to provide information on the efficacy of those deployed genes. Louisiana (LA), with its diverse agricultural landscape, is not exempt from the challenges posed by this destructive pest. We previously documented the resistance response of wheat lines harboring Hessian fly resistance (H) genes against field populations collected in 2008 from across the southeastern United States, including Iberville Parish, LA. In the spring of 2023, we reevaluated the resistance response of 27 H genes from the field populations collected from Iberville Parish, LA, and compared the results with those observed in 2008. Sixteen H genes showed comparable resistance to the field populations from both years. While 3 of the H genes, H11, H23, and H24, showed a significant decrease in resistance, 2 genes, H16 and H31, had marked increase in resistance. Furthermore, 6 additional H genes were evaluated in 2023, with 4 showing >70% resistance. Our results clearly identify a total of 20 H genes that are moderate to highly effective against the 2023 Hessian fly population from Iberville Parish, LA. The resistance response documented in this study offers valuable information to wheat breeders in the region for effective management of this insect pest.


Assuntos
Dípteros , Animais , Dípteros/genética , Triticum/genética , Virulência , Sudeste dos Estados Unidos , Louisiana
18.
Int J Legal Med ; 138(2): 627-637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934208

RESUMO

Forensic entomological evidence is employed to estimate minimum postmortem interval (PMImin), location, and identification of fly samples or human remains. Traditional forensic DNA analysis (i.e., STR, mitochondrial DNA) has been used for human identification from the larval gut contents. Forensic DNA phenotyping (FDP), predicting human appearance from DNA-based crime scene evidence, has become an established approach in forensic genetics in the past years. In this study, we aimed to recover human DNA from Lucilia sericata (Meigen 1826) (Diptera: Calliphoridae) gut contents and predict the eye and hair color of individuals using the HIrisPlex system. Lucilia sericata larvae and reference blood samples were collected from 30 human volunteers who were under maggot debridement therapy. The human DNA was extracted from the crop contents and quantified. HIrisPlex multiplex analysis was performed using the SNaPshot minisequencing procedure. The HIrisPlex online tool was used to assess the prediction of the eye and hair color of the larval and reference samples. We successfully genotyped 25 out of 30 larval samples, and the most SNP genotypes (87.13%) matched those of reference samples, though some alleles were dropped out, producing partial profiles. The prediction of the eye colors was accurate in 17 out of 25 larval samples, and only one sample was misclassified. Fourteen out of 25 larval samples were correctly predicted for hair color, and eight were misclassified. This study shows that SNP analysis of L. sericata gut contents can be used to predict eye and hair color of a corpse.


Assuntos
Dípteros , Cor de Cabelo , Animais , Humanos , Larva/genética , Dípteros/genética , Genótipo , DNA Mitocondrial/genética , Cor de Olho/genética
19.
Gene ; 896: 148045, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042219

RESUMO

The black soldier fly (Hermetia illucens) has emerged as a significant insect species in the decomposition of organic waste for sustainable agricultural practices. Due to its remarkable characteristics and performance, H. illucens is increasingly utilised for insect farming, particularly for industrial-scale rearing throughout the world. In this study, we employed whole-genome sequencing to annotate the gene and protein functions of H. illucens and to explore the functional genomics related to nutrients and energy. As a result, a genome size of H. illucens strain KUP 1.68 Gb with a GC content of 42.13 % was achieved. Of the 14,036 coding sequences, we determined the function of 12,046 protein-coding genes. Based on metabolic functional assignment, we classified 4,218 protein-coding genes; the main category was metabolism (32.86 %). Comparative genomic analysis across the other H. illucens strain and insect species revealed that the major metabolic gene functions and pathways related to nutrient and energy sources of H. illucens KUP are involved in key amino acid metabolism (e.g., cysteine and methionine) as well as fatty acid biosynthesis and glycerolipid metabolism. These findings underscore the metabolic capability and versatility of H. illucens, which is regarded as a potential source of proteins and lipids. Our study contributes to the knowledge regarding the feed utilisation of H. illucens and offers insights into transforming waste into valuable products. H. illucens has the potential to create globally sustainable nutrients and environmentally friendly solutions, aligning with the goal of responsible resource utilisation.


Assuntos
Dípteros , Animais , Larva/metabolismo , Dípteros/genética , Metabolismo dos Lipídeos , Ração Animal/análise , Nutrientes
20.
Environ Res ; 242: 117636, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952853

RESUMO

Native biodiversity and ecosystems of Antarctica safeguarded from biological invasion face recent threats from non-native species, accelerated by increasing human activities and climate changes. Over two decades ago, the winter crane fly, Trichocera maculipennis, was first detected on King George Island. It has now successfully colonized several research stations across King George Island. To understand the origin, genetic diversity, and population structure of this Holarctic species, we conducted mitochondrial DNA cytochrome c oxidase subunit I (COI) sequence analysis across both its native and invasive ranges. In parallel, we performed microsatellite loci analysis within the invasive ranges, utilizing 12 polymorphic microsatellite markers. Furthermore, we compared body sizes among adult males and females collected from three different locations of King George Island. Our COI sequence analysis exhibited two different lineages present on King George Island. Lineage I was linked to Arctic Svalbard and Polish cave populations and Lineage II was related to Canadian Terra Nova National Park populations, implying multiple origins. Microsatellite analysis further exhibited high levels of genetic diversity and significant levels of genetic differentiation among invasive populations. Body sizes of adult T. maculipennis were significantly different among invasive populations but were not attributed to genetics. This significant genetic diversity likely facilitated the rapid colonization and establishment of T. maculipennis on King George Island, contributing to their successful invasion. Molecular analysis results revealed a substantial amount of genetic variation within invasive populations, which can serve as management units for invasive species control. Furthermore, the genetic markers we developed in the study will be invaluable tools for tracking impending invasion events and the travel routes of new individuals. Taken together, these findings illustrate the highly invasive and adaptable characteristics of T. maculipennis. Therefore, immediate action is necessary to mitigate their ongoing invasion and facilitate their eradication.


Assuntos
Dípteros , Ecossistema , Humanos , Masculino , Animais , Feminino , Dípteros/genética , Regiões Antárticas , Canadá , Biodiversidade , Variação Genética , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...